Peatükk 1.5 (Hulkliikmed 8. kl)

Hulkliikmete lahutamine

Hulkliikmete lahutamine

1. Ava sulud.

Miinusmärk sulu ees muudab märki sulu sees!

(3x + x2 + 5) (2x – 7) =

= 3x + x2 + 5 2x + 7 =

2. Koonda hulkliige.

= x + x2 + 12 =

3. Kui vaja, korrasta hulkliikme järjekord.

= x2 + x + 12

Veel näiteid:

6a (4a + 7) = 6a 4a 7 = 2a – 7

(2x2 – 3x + 3) (7x – 4x2) = 2x2 – 3x + 3 – 7x + 4x2 = 6x2 – 10x + 3

(3a + 3) (2a2 – 4a +1) = 3a + 3 – 2a2 + 4a 1 = 7a + 2 – 2a2 = –2a2 + 7a + 2

(5 + 2x + x2) (–2x + 3x – 4) = 5 + 2x + x2 + 2x 3x + 4 = 9 + x + x2 = x2 + x + 9

Ülesanded

3a-\left(2a-3\right)=

a^2-\left(-a^2+2a\right)=

\left(3x+3x^2\right)-\left(2x^2-x\right)=

\left(a-a^2\right)-\left(a+3\right)+\left(a-3\right)=

\left(5x-2x^2\right)-\left(3x-3+x^2\right)=

3a-2a+3=

a^2-a^2-2a=

3x+3x^2-2x^2+x=

4a-a^2-a+3=

5x-2x^2-3x+3-x^2=

  • + 3
  • –a
  • a2
  • + 5
  • + 2a
  • + 4x
  • –x2
  • + 3
  • a2
  • –3
  • + 3a
  • –8x
  • –3
  • –x2

3a-\left(2a+7\right)==

\left(2m-3n^2\right)-\left(4n^2+m\right)==

-\left(3x+2y^2\right)-\left(4x-y^2\right)==

\left(3a-5b+2c-6\right)-\left(2a-5b+6c-7\right)=

==

\left(8x-2y+1\right)-\left(-2y-6x-4\right)-\ \left(2x+8y+5\right)=

==

\left(3y^2-5y+2\right)-\left(7y^2+2y-3\right)-\ \left(y^2-3y-1\right)=

==

Palun oota