А
- Аксиома – (aksioom) утверждение, которое принимается без доказательства и служит основой дальнейших рассуждений.
- Аксиома параллельных прямых – (paralleelide aksioom) на плоскости через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной.
- Апофема многоугольника – (hulknurga apoteem) радиус вписанной в правильный многоугольник окружности. Обозначается через r.
Б
- База – (baas) отмеченный на местности и как можно более точно измеренный отрезок, служащий для косвенного измерения расстояния.
- Боковые стороны трапеции – (trapetsi haarad) непараллельные стороны трапеции.
В
- Внешний угол треугольника – (kolmnurga välisnurk) угол, смежный с углом треугольника.
- Внутренние накрест лежащие углы – (põiknurgad) два угла, внутренние области которых находятся по разные стороны от секущей и стороны которых, расположенные на секущей, направлены навстречу друг другу.
- Внутренние односторонние углы – ( lähisnurgad) два угла, внутренние области которых находятся по одну сторону от секущей и стороны которых, расположенные на секущей, направлены навстречу друг другу.
- Внутренние углы треугольника – (kolmnurga sisenurgad) то же, что и углы треугольника.
- Вписанная в многоугольник окружность – (hulknurga siseringjoon) окружность, касающаяся всех сторон многоугольника, т. е. стороны многоугольника являются касательными к этой окружности.
- Вписанный в окружность многоугольник – (kõõlhulknurk) многоугольник, все вершины которого лежат на окружности.
- Вписанный угол – (piirdenurk) угол, вершина которого лежит на окружности, а стороны пересекают окружность. Вписанный угол равен половине центрального угла, опирающегося на ту же дугу. Все вписанные углы, опирающиеся на одну и ту же дугу, равны между собой.
- Высота трапеции – (trapetsi kõrgus) расстояние между параллельными сторонами трапеции, также соответствующий отрезок.
- Вычитание многочленов – (hulkliilmete lahutamine) к уменьшаемому многочлену нужно прибавить все члены вычитаемого многочлена с противоположными знаками. Если результат содержит подобные слагаемые, то их нужно привести.
Г
- Градусная мера дуги – (kaare kraadimõõt) градусная мера соответствующего дуге окружности центрального угла.
- График линейного уравнения с двумя неизвестными – (kahe nundmatuga lineaarvõrrandi graafiline esitus) графиком линейного уравнения с двумя неизвестными является прямая линия. Координаты каждой точки этой прямой удовлетворяют данному уравнению и каждое решение уравнения изображается точкой, расположенной на этой прямой.
- Графический способ – (graafiline võte) – нужно построить графики уравнений системы (прямые) на одной координатной плоскости. Решениями системы будут координаты общих точек построенных прямых.
Д
- Двучлен – (kaksliige) многочлен, состоящий из двух неподобных членов.
- Деление многочлена на одночлен – (hulkliikme jagamine üksliikmega) чтобы разделить многочлен на одночлен, нужно разделить на этот одночлен каждый член многочлена и полученные частные сложить.
- Доказательство теоремы – (teoreemi tõestus) обоснование истинности утверждения теоремы с помощью логических рассуждений.
- Дуга окружности – (ringjoone kaar) часть окружности, расположенная внутри центрального угла.
З
- Заключение теоремы – (teoreemi väide) говорит, что можно вывести из условия или что требуется доказать.
К
- Касательная к окружности – (ringjoone puutuja) прямая, имеющая с окружностью только одну общую точку.
- Косвенное измерение расстояний – (pikkuste kaudne mõõtmine) основанное на подобии треугольников измерение расстояний и высот в случаях, когда их непосредственное измерение невозможно или затруднительно.
- Коэффициент подобия – (sarnasustegur) положительное число, равное отношению соответствующих сторон подобных треугольников (подобных многоугольников).
- Коэффициенты линейного уравнения – (lineaarvõrrandi kordajad) буквы a, b и с в уравнении ах + by = c, обозначающие заданные числа.
- Коэффициенты многочлена – (hulkliikme kordajad) коэффициенты одночленов, образующих многочлен.
Л
- Линейное уравнение с двумя неизвестными – (kahe tundmatuga lineaarvõrrand) уравнение, которое после упрощений приводится к общему виду ах + by = c.
- Линейный член – (lineaarliige) одночлен ах в уравнениии ах + b = 0.
М
- Масштаб – (mõõtkava, plaanimõõt) коэффициент подобия, используемый при составлении карт или планов, указывает, во сколько раз расстояния на карте (плане) меньше действительных; записывается в виде 1 : n.
- Масштабная линейка – (joonmõõt) линия или полоса, разделенная на части. Она подписана согласно реальным расстояниям на поверхности Земли, обычно в кратных единицах карты, например, таких как десятки километров.
- Медиана треугольника – (kolmnurga mediaan) отрезок, соединяющий вершину треугольника с серединой противоположной стороны.
- Метод доказательства от противного – (vastuväiteline tõestusmeetod) в случае такого метода предполагают, что заключение теоремы не является истинным, а истинным является его отрицание. В ходе рассуждения показывают, что отрицание заключения теоремы приводит к противоречию с условием теоремы или с каким-нибудь истинным утверждением. Отсюда следует, что отрицание доказываемого заключения теоремы не может быть истинным, и, значит, истинным является заключение теоремы.
- Многочлен – (hulkliige) сумма одночленов.
О
- Обобщенная теорема Фалеса – (kiirteteoreem) параллельные прямые, пересекающие стороны угла, отсекают от сторон угла пропорциональные отрезки.
- Окружность, вписанная в треугольник – (kolmnurga siseringjoon) окружность, касающаяся всех сторон треугольника.
- Окружность, описанная около треугольника – (kolmnurga ümberringjoon) окружность, проходящая через все вершины треугольника.
- Описанная около многоугольника окружность – (hulknurga ümberringjoon) окружность, проходящая через все вершины правильного многоугольника.
- Определение понятия – (mõiste definitsioon) точный и краткий ответ на вопрос Что называется...? или Что такое ...?.
- Определить понятие – (defineerida mõiste) ответить на вопрос Что называется...? или Что такое ...?.
- Основания трапеции – (trapetsi alused) параллельные стороны трапеции.
- Основное понятие – (algmõiste) понятие, которое нельзя определить с помощью еще более простых понятий.
- Отношение отрезков – (lõikude suhe) отношение длин этих отрезков.
П
- Площадь трапеции – (trapetsi pindala) равна произведению полусуммы ее оснований на высоту.
- Подобные многоугольники – (sarnased hulknurgad) многоугольники, у которых соответственные стороны пропорциональны, а соответственные углы равны.
- Подобные треугольники – (sarnased kolmnurgad) треугольники с соответственно пропорциональными сторонами.
- Подобные фигуры – (sarnased kujundid) фигуры, у которых отношение расстояний между соответствующими точками является постоянной величиной.
- Правильный многоугольник – (korrapärane hulknurk) многоугольник, у которого все стороны равны и все углы равны.
- Правильный треугольник – (korrapärane kolmnurk) равносторонний треугольник.
- Правильный четырехугольник – (korrapärane nelinurk) то же, что и квадрат.
- Признак параллельности прямых по внутренним накрест лежащим углам – (sirgete paralleelsuse tunnus põiknurkade kaudu) две прямые параллельны тогда и только тогда, когда при пересечении их третьей прямой образуются равные внутренние накрест лежащие углы.
- Признак параллельности прямых по внутренним односторонним углам – (sirgete paralleelsuse tunnus lähisnurkade kaudu) две прямые параллельны тогда и только тогда, когда при пересечении их третьей прямой сумма внутренних односторонних углов равна 180°.
- Признак подобия треугольников по двум сторонам и углу между ними – (kolmnurkade sarnasuse tunnus kahe külje ja nendevahelise nurga järgi) если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны.
- Признак подобия треугольников по двум углам – (kolmnurkade sarnasuse tunnus kahe nurga järgi) если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.
- Пропорциональные отрезки – (võrdelised lõigud) два множества отрезков, между которыми можно установить такое соответствие, что все отношения соответствующих друг другу отрезков равны.
- Прямоугольная трапеция – (täisnurkne trapets) трапеция, один из углов которой является прямым.
Р
- Равнобедренная трапеция – (võrdhaarne trapets) трапеция, у которой боковые стороны равны.
- Разложение многочлена на множители – (hulkliikme tegurdamine) преобразование многочлена в произведение.
- Раскрытие скобок – (sulgude avamine) чтобы раскрыть скобки, перед которыми стоит знак плюс, надо записать без скобок все члены, стоящие в скобках, с их знаками;чтобы раскрыть скобки, перед которыми стоит знак минус, надо записать с противоположными знаками (без скобок) все члены, стоящие в скобках.
- Решение линейного уравнения с двумя неизвестными – (kahe tundmatuga lineaarvõrrandi lahend) каждая пара значений x = p и y = q, при подстановке которых в линейное уравнение ax + by = c с двумя неизвестными x и y получается верное равенство.
- Решение системы линейных уравнений с двумя неизвестными – (kahe tundmatuga lineaarvõrrandisüsteemi lahend) общее решение входящих в систему уравнений.
С
- Свободный член – (vabaliige) слагаемое b в уравнении ах + b = 0.
- Секущая – (lõikaja) прямая, пересекающая две другие данные прямые.
- Система линейных уравнений с двумя неизвестными – (kahe tundmatuga lineaarvõrrandisüsteem) система, составленная из двух линейных уравнений с двумя неизвестными. Решить систему значит найти общие решения этих уравнений
- Сложение многочленов – (hulkliikmete liitmine) члены одного многочлена записываются вслед за членами другого многочлена с теми же знаками, что были у них раньше. Если полученная сумма содержит подобные члены, то нужно выполнить их приведение.
- Специальное свойство – (eritunnus) свойство, выделяющее рассматриваемые объекты из более широкого множества объектов.
- Способ алгебраического сложения – (liitmisvõte) исключение одного из неизвестных путем сложения соответствующих частей обоих уравнений системы (при необходимости обе части уравнений умножают на подходящие числа) .
- Способ подстановки – (asendusvõte) прием, который позволяет сводить решение системы линейных уравнений с двумя неизвестными к решению одного линейного уравнения с одним неизвестным. В одном из уравнений одно из неизвестных выражают через второе и подставляют в другое уравнение.
- Средняя линия трапеции – (trapetsi kesklõik) отрезок, соединяющий середины боковых сторон трапеции.
- Средняя линия треугольника – (kolmnurga kesklõik) отрезок, соединяющий середины двух сторон треугольника.
- Стандарный вид системы линейных уравнений с двумя неизвестными – (kahe tundmatuga lineaarvõrrandisüsteemi normaalkuju) представление системы в виде, при котором свободные члены стоят в правых частях уравнений.
- Стандартный вид линейного уравнения с двумя неизвестными – ( kahe tundmatuga lineaarvõrrandi normaalkuju) представление этого уравнения в виде ax + by = c.
- Стандартный вид многочлена – (hulkliikme normaalkuju) запись многочлена в виде, при котором слагаемые располагаются в порядке убывания сумм степеней переменных, а сами переменные – в алфавитном порядке.
- Сумма внутренних углов треугольника – (kolmnurga sisenurkade summa) сумма углов треугольника; она равна 180 градусам.
Т
- Теорема – (teoreem) утверждение, истинность которого можно обосновать при помощи ранее известных истинных утверждений.
- Теорема Фалеса – (Thalese teoreem) вписанный в окружность угол, опирающийся на полуокружность (или на диаметр), является прямым углом.
- Точка касания – (puutepunkt) единственная общая точка окружности и проведенной к ней касательной.
- Трапеция – (trapets) четырехугольник, у которого две стороны параллельны, а две другие стороны непараллельны.
- Трехчлен – (kolmliige) многочлен, состоящий из трех неподобных друг другу членов.
У
- Углы при основании трапеции – (trapetsi alusnurgad) углы, прилежащие к основанию трапеции.
- Умножение двучленов – (kaksliikmete korrutamine) чтобы умножить двучлен на двучлен, нужно каждый член одного двучлена умножить на каждый член другого двучлена и полученные произведения сложить.
- Умножение многочлена на одночлен – (hulkliikme korrutamine üksliikmega) чтобы умножить многочлен на одночлен, нужно умножить на этот одночлен каждый член многочлена и затем сложить полученные произведения.
- Умножение многочленов – (hulkliikmete korrutamine) чтобы умножить многочлен на многочлен, нужно каждый член одного многочлена умножить на каждый член другого и полученные произведения сложить.
- Условие теоремы – ( teoreemi eeldus) говорит о том, что дано или что известно.
Ф
- Формула квадрата разности – (vahe ruudu valem) квадрат разности двух одночленов равен квадрату первого члена, минус удвоенное произведение первого члена на второй, плюс квадрат второго члена.
- Формула квадрата суммы – (summa ruudu valem) квадрат суммы двух одночленов равен квадрату первого члена, плюс удвоенное произведение первого члена на второй, плюс квадрат второго члена.
- Формула разности квадратов – (ruutude summa valem) произведение суммы двух одночленов на их разность равно разности квадратов этих одночленов.
Ц
- Центр правильного многоугольника – (korrapärase hulknurga keskpunkt) общий центр вписанной и описанной окружностей многоугольника.
- Центр тяжести треугольника – (kolmnurga raskuskese) точка пересечения трёх медиан треугольника.
- Центральный угол – (kesknurk) угол между двумя радиусами окружности.